1 The first steps of two **different** reaction mechanisms are shown.

(a) Wł	nat do both reaction mechanism steps have in common?	(1)
🖾 A	They involve addition.	(1)
B	They involve substitution.	
🖾 C	As one bond is made, one bond is broken.	
D 🛛	The attack is on a planar group.	
(b) Only one of the first steps above (1)		
Α 🖾	leads to the formation of a racemic mixture.	
B	involves initial attack by a nucleophile.	
🖾 C	involves initial attack by an electrophile.	
☑ D	leads to an elimination.	

(Total for Question = 2 marks)

- 2 The reaction of ammonia with propanoyl chloride, C_2H_5COCI , forms
 - \square **A** C₂H₅NH₂
 - \blacksquare **B** C₂H₅CONH₂
 - \square **C** C₂H₅CH(OH)NH₂
 - \square **D** C₂H₅CONHC₂H₅

(Total for Question = 1 mark)

- **3** The reaction of 1-chloropropane with water containing dissolved silver nitrate in the presence of ethanol is
 - **A** a redox reaction.
 - **B** a nucleophilic substitution.
 - **C** an electrophilic substitution.
 - **D** a free radical substitution.

(Total for Question = 1 mark)

- **4** The compound with formula $CH_{3}CH(NH_{2})CH_{3}$ can be made by reacting alcoholic ammonia with
 - **A** propane.
 - **B** propene.
 - C 2-chloropropane.
 - **D** propan-2-ol.

(Total for Question = 1 mark)

5

$$C_2H_5Br + NaOH \rightarrow C_2H_4 + NaBr + H_2O$$

This reaction is an example of

- **A** addition.
- **B** elimination.
- C hydrolysis.
- **D** oxidation.

(Total for Question = 1 mark)

6 Nucleophiles are

- A electron pair donors that attack regions of high electron density.
- **B** electron pair donors that attack regions of low electron density.
- C electron pair acceptors that attack regions of high electron density.
- **D** electron pair acceptors that attack regions of low electron density.

(Total for Question 1 mark)

- 7 When iodomethane, CH₃I, is heated in a sealed tube with an excess of alcoholic ammonia, which of the following **cannot** be formed?
 - \square **A** Methylamine, CH₃NH₂
 - \blacksquare **B** Ethylamine, CH₃CH₂NH₂
 - \square **C** Dimethylamine, (CH₃)₂NH
 - \square **D** Ammonium iodide, NH₄I

(Total for Question 1 mark)

8 Which of the following is essential if a species is to act as a nucleophile?

- \square **A** A lone pair of electrons.
- \square **B** A negative charge.
- \square C An unpaired electron.
- \square **D** A strongly polar bond.

(Total for Question = 1 mark)

9 Which of these compounds is a secondary halogenoalkane?

- \square A CH₃CH(OH)CH₃
- \square **B** CH₃CCl(CH₃)CH₃
- \square C CH₃CHClCH₃
- D CH₃CH₂CH₂Cl

(Total for Question = 1 mark)

- **10** The reaction of the halogenoalkane, C₂H₅Cl, with alcoholic ammonia is
 - A nucleophilic substitution.
 - **B** electrophilic substitution.
 - C reduction.
 - **D** elimination.

(Total for Question = 1 mark)

11 The formation of a carbocation from a halogenoalkane is an example of

- A homolytic fission.
- **B** heterolytic fission.
- **C** an initiation reaction.
- **D** a propagation reaction.

(Total for Question = 1 mark)

12 When a chloroalkane is heated with aqueous sodium hydroxide

- A no reaction occurs with primary, secondary or tertiary chloroalkanes.
- **B** a reaction occurs with primary and secondary chloroalkanes but not with tertiary chloroalkanes.
- \square C a reaction occurs with tertiary chloroalkanes but not with primary and secondary chloroalkanes.
- **D** a reaction occurs with primary, secondary and tertiary chloroalkanes.

(Total for Question 1 mark)

- 13 Consider the following organic liquids:
 - A ethanal
 - **B** ethanol
 - C tetrachloromethane
 - **D** trichloromethane
 - (a) Each liquid is run from a burette. Which liquid would **not** be deflected significantly by a charged rod?
 - 🖾 A
 - **B**
 - **C**
 - **D**
 - (b) Which liquid would react with phosphorus(V) chloride to give a gas which fumes in moist air?
 - $\blacksquare \mathbf{A}$
 - B
 - **C**
 - D D
 - (c) Which liquid would you expect to have the peak at the greatest mass/charge ratio in its mass spectrum?
 - $\square \mathbf{A}$ $\square \mathbf{B}$ (1)
 - **C**
 - D D
 - (d) Which liquid has an infrared spectrum with a broad absorption due to hydrogen bonding?
 - $\square \mathbf{A}$ $\square \mathbf{B}$ $\square \mathbf{C}$ (1)
 - D D

(1)